Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Type of study
Language
Year range
1.
Braz. j. med. biol. res ; 45(4): 328-336, Apr. 2012. ilus
Article in English | LILACS | ID: lil-622754

ABSTRACT

The hypothalamus is a forebrain structure critically involved in the organization of defensive responses to aversive stimuli. Gamma-aminobutyric acid (GABA)ergic dysfunction in dorsomedial and posterior hypothalamic nuclei is implicated in the origin of panic-like defensive behavior, as well as in pain modulation. The present study was conducted to test the difference between these two hypothalamic nuclei regarding defensive and antinociceptive mechanisms. Thus, the GABA A antagonist bicuculline (40 ng/0.2 µL) or saline (0.9% NaCl) was microinjected into the dorsomedial or posterior hypothalamus in independent groups. Innate fear-induced responses characterized by defensive attention, defensive immobility and elaborate escape behavior were evoked by hypothalamic blockade of GABA A receptors. Fear-induced defensive behavior organized by the posterior hypothalamus was more intense than that organized by dorsomedial hypothalamic nuclei. Escape behavior elicited by GABA A receptor blockade in both the dorsomedial and posterior hypothalamus was followed by an increase in nociceptive threshold. Interestingly, there was no difference in the intensity or in the duration of fear-induced antinociception shown by each hypothalamic division presently investigated. The present study showed that GABAergic dysfunction in nuclei of both the dorsomedial and posterior hypothalamus elicit panic attack-like defensive responses followed by fear-induced antinociception, although the innate fear-induced behavior originates differently in the posterior hypothalamus in comparison to the activity of medial hypothalamic subdivisions.


Subject(s)
Animals , Male , Rats , Dorsomedial Hypothalamic Nucleus/physiology , Escape Reaction/physiology , Hypothalamus, Posterior/physiology , Panic Disorder/metabolism , Bicuculline/pharmacology , Dorsomedial Hypothalamic Nucleus/drug effects , GABA-A Receptor Antagonists/pharmacology , Hypothalamus, Posterior/drug effects , Maze Learning , Pain Threshold/drug effects , Panic Disorder/etiology
2.
Braz. j. med. biol. res ; 30(9): 1121-7, Sept. 1997. ilus, tab, graf
Article in English | LILACS | ID: lil-200003

ABSTRACT

The effects of dorsomedial hypothalamic (DMH) nucleus lesion on body weight, plasma glucose levels, and the gastric emptying of a liquid meal were investigated in male Wistar rats (170-250 g). DMH lesions were produced stereotaxically by delivering a 2.0 mA current for 20 s through nichrome electrodes (0.3-mm tip exposure). In a second set of experiments, the DMH and the ventromedial hypothalamic (VMH) nucleus were lesioned with a 1.0-mA current for 10 s (0.1-mm tip exposure). The medial hypothalamus (MH) was also lesioned separately using a nichrome electrode (0.3-mm tip exposure) with a 2.0-mA current for 20 s. Gastric emptying was measured following the orogastric infusion of a liquid test meal consisting of physiological saline (0.9 percent NaCl, w/v) plus phenol red dye (6 mg/dl) as a marker. Plasma glucose levels were determined after an 18-h fast before the lesion and on the 7th and 15th postoperative day. Body weight was determined before lesioning and before sacrificing the rats. The DMH-lesioned rats showed a significantly faster (P<0.05) gastric emptying (24.7 percent gastric retention, N = 11) than control (33.0 percent gastric retention, N = 8) and sham-lesioned (33.5 percent gastric retention, N = 12) rats, with a transient hypoglycemia on the 7th postoperative day which returned to normal by the 15th postoperative day. In all cases, weight gain was slower among lesioned rats. Additional experiments using a smaller current to induce lesions confirmed that DNH-lesioned rats had a faster gastric emptying (25.1 percent gastric retention, N =7) than control (33.4 percent gastric retention, N = 17) and VMH-lesioned (34.6 percent gastric retention, N = 7) rats. MH lesions resulted in an even slower gastric emptying (43.7 percent gastric retention, N = 7) than in the latter two groups. We conclude that although DMH lesions reduce weight gain, they do not produce consistent changes in plasma glucose levels. These lesions also promote faster gastric emptying of an inert liquid meal, thus suggesting a role for the DMH in the regulation of gastric motility.


Subject(s)
Rats , Animals , Male , Dorsomedial Hypothalamic Nucleus/physiology , Gastric Emptying/physiology , Blood Glucose/analysis , Body Weight , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL